Connect with us

Biotech

New Research Questions ‘whiff of Oxygen’ in Earth’s Early History

Carly Russell

Published

on

HANOVER, N.H. – January 5, 2022 – Evidence arguing for a “whiff of oxygen” before the Earth’s Great Oxygenation Event 2.3 billion years ago are chemical signatures that were probably introduced at a much later time, according to research published in Science Advances.

HANOVER, N.H. – January 5, 2022 – Evidence arguing for a “whiff of oxygen” before the Earth’s Great Oxygenation Event 2.3 billion years ago are chemical signatures that were probably introduced at a much later time, according to research published in Science Advances.

The result rewinds previous research findings that atmospheric oxygen existed prior to the so-called Great Oxygenation Event–known to researchers as “GOE”– and has the potential to rewrite what is known of the planet’s past.

“Without the whiff of oxygen reported by a series of earlier studies, the scientific community needs to critically reevaluate its understanding of the first half of Earth’s history,” said Sarah Slotznick, an assistant professor of earth sciences at Dartmouth and first author of the study.

The study indicates that the chemical data originally determined to suggest atmospheric oxygen earlier in Earth’s history may have been introduced by events hundreds of millions of years later.

Additional analysis conducted as part of the study reconfirms that Earth’s atmosphere featured exceedingly low oxygen levels prior to 2.3 billion years ago.

“We used new tools to investigate the origins of the signals of trace oxygen,” said Jena Johnson, an assistant professor of earth and environmental sciences at the University of Michigan and co-author of the study. “We found that a series of changes after the sediments were deposited on the seafloor were likely responsible for the chemical evidence of oxygen.”

The Initiation of Oxygenation
For decades, scientists have debated when measurable levels of oxygen first appeared in Earth’s atmosphere. The idea of the Great Oxygenation Event has developed over the last century and is thought to be when oxygen levels began to increase over 2 billion years ago, paving the way for the rise of complex cells, animals, and eventually humans.

More recently, however, research on chemical signals correlated to oxygen has suggested earlier transient appearances of oxygen, known as “whiffs.”

In 2007, two parallel studies found evidence of such a whiff of oxygen based on samples of the 2.5-billion-year-old Mount McRae Shale, part of a heavily studied 2004 drill core collected in Western Australia by the NASA Astrobiology Drilling Program.

“When the results came out a decade ago, they were startling,” said Joseph Kirschvink, professor of geobiology at Caltech, a member of the Earth-Life Science Institute at the Tokyo Institute of Technology, and a co-author of the new study. “The findings seemed to contradict abundant evidence from other geological indicators that argued against the presence of free oxygen before the Great Oxygenation Event.”

A Research Origin Story 
The 2007 studies were based on evidence of oxidation and reduction of molybdenum and sulfur, two elements that are widely used to test for the presence of atmospheric oxygen since it cannot be measured directly in rock. The findings raised fundamental questions about the early evolution of life on Earth.

The observation of early oxygen was taken by some research groups to support earlier findings that microscopic cyanobacteria—early innovators in photosynthesis—pumped oxygen into the ancient atmosphere but that other Earth processes kept oxygen levels low.

The 2007 studies, including their implications about the origin of life and its evolution, have been widely accepted and have served as the basis for a series of other research papers over the last 14 years.

The new study dates back to 2009, when a Caltech-led team began efforts to conduct additional analysis. The team, some of whom have since moved to other institutions, took over a decade to collect and analyze data, resulting now in the first published study that directly refutes the finding of a whiff of early oxygen.

“Rocks this old tell a complicated story that goes beyond what the world was like when the mud was deposited,” said Woodward Fischer, a professor of geobiology at Caltech and co-author of the study. “These samples also contain minerals that formed long after their deposition when ancient environmental signals were mixed with younger ones, confusing interpretations of the conditions on ancient Earth.”

A Matter of Approach
The 2007 research papers that found the whiff of oxygen prior to Earth’s full oxygenation used bulk analysis techniques featuring geochemical assessments of powdered samples sourced from throughout the Mount McRae Shale. Rather than conducting a chemical analysis on powder, the new research inspected specimens of the rock using a series of high-resolution techniques.

For the new study, the research team recorded images of the 2004 drill core on a flatbed optical scanner. Based on those observations, they then collected thin samples for additional analyses. The suite of approaches used on the physical specimens, including synchrotron-based X-ray fluorescence spectroscopy, gave the team additional insight into the geology and chemistry of the samples as well as the relative timing of processes that were identified.

According to the research paper: “Our collective observations suggest that the bulk chemical datasets pointing toward a ‘whiff’ of oxygen developed during post-depositional events.”

The new analysis shows that the Mount McRae Shale formed from organic carbon and volcanic dust. The research indicates that molybdenum came from volcanoes and subsequently concentrated during what has been previously characterized as the whiff interval. During a series of chemical and physical changes that turned these sediments into rock, fracturing created pathways for several distinct fluids to carry in signals of oxidation hundreds of millions of years after the rocks formed.

“Our observations of abundant pyroclastic glass shards and intercalated tuff beds, paired with the recent insight that volcanic glass is a major host of [molybdenum], offers a new explanation for the [molybdenum] enrichments in the ‘whiff’ interval,” the paper says.

Looking Back to Point a Way Forward
If the molybdenum was not from oxygen-based weathering of rocks on land and concentration in the ocean, its presence does not support the original finding of early atmospheric oxygen. By using a totally different methodology than that used in the first studies that found a whiff of oxygen, the new research also calls into question research that followed from those studies using the same style of bulk techniques.

“Our new, high-resolution data clearly indicates that the sedimentary context of chemical signals has to be carefully considered in all ancient records,” said Johnson.

In addition to providing an alternate explanation for oxygen proxies that were found in the Mount McRae Shale, the team confirmed that the level of atmospheric oxygen at the time before the Great Oxygenation Event was very low, calling it “negligible” in the approximate period 150 million years before the abrupt change.

The findings call into question the early existence of cyanobacteria, instead supporting other hypotheses that oxygen-generating photosynthesis evolved only shortly before the Great Oxygenation Event.

“We expect that our research will generate interest both from those studying Earth and those looking beyond at other planets,” said Slotznick. “We hope that it stimulates further conversation and thought about how we analyze chemical signatures in rocks that are billions of years old.”

Birger Rasmussen, of the University of Western Australia and China University of Geosciences; Timothy D. Raub, of the University of St Andrews and the Geoheritage Research Institute; Samuel Webb, of SLAC National Accelerator Laboratory; and Jian-Wei Zi, of the China University of Geosciences, all contributed to the study.

###

NOTES FOR EDITORS:

Original 2007 research papers suggesting a “whiff of oxygen”:

A. D. Anbar, Y. Duan, T.W. Lyons, G. L. Arnold, B. Kendall, R. A. Creaser, A. J. Kaufman, G. W. Gordon, C. Scott, J. Garvin, R. Buick, “A whiff of oxygen before the great oxidation event?” Science 317, 1903-1906 (2007).

A. J. Kaufman, D. T. Johnston, J. Farquhar, A. L. Masterson, T. W. Lyons, S. Bates, A. D. Anbar, G. L. Arnold, J. Garvin, R. Buick, “Late archean biospheric oxygenation and atmospheric evolution.” Science 317, 1900-1903 (2007).

Companion Dartmouth web story “Research Questions ‘Whiff of Oxygen’ on Ancient Earth” https://home.dartmouth.edu/news/2022/01/research-questions-whiff-oxygen-ancient-earth

For additional information and images: David Hirsch: [email protected]

Funding for this research came from the Agouron Institute, Packard Foundation, NASA, and the National Science Foundation.

A portion of the technical research was conducted at the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

About Dartmouth: Founded in 1769, Dartmouth is a member of the Ivy League and consistently ranks among the world’s greatest academic institutions. Dartmouth has forged a singular identity for combining its deep commitment to outstanding undergraduate liberal arts and graduate education with distinguished research and scholarship in the Arts and Sciences and its four leading graduate schools—the Geisel School of Medicine, the Guarini School of Graduate and Advanced Studies, Thayer School of Engineering, and the Tuck School of Business.

Read More

Article: bioengineer.org

Biotech

UNLV Research: No, the Human Brain Did Not Shrink 3,000 Years Ago

Carly Russell

Published

on

Did the 12th century B.C.E. — a time when humans were forging great empires and developing new forms of written text — coincide with an evolutionary reduction in brain size? Think again, says a UNLV-led team of researchers who refute a hypothesis that’s growing increasingly popular among the science community.

Did the 12th century B.C.E. — a time when humans were forging great empires and developing new forms of written text — coincide with an evolutionary reduction in brain size? Think again, says a UNLV-led team of researchers who refute a hypothesis that’s growing increasingly popular among the science community.

Last year, a group of scientists made headlines when they concluded that the human brain shrank during the transition to modern urban societies about 3,000 years ago because, they said, our ancestors’ ability to store information externally in social groups decreased our need to maintain large brains. Their hypothesis, which explored decades-old ideas on the evolutionary reduction of modern human brain size, was based on a comparison to evolutionary patterns seen in ant colonies.

Not so fast, said UNLV anthropologist Brian Villmoare and Liverpool John Moores University scientist Mark Grabowski.

In a new paper published last week in Frontiers in Ecology and Evolution, the UNLV-led team  analyzed the dataset that the research group from last year’s study used and dismissed their findings.

“We were struck by the implications of a substantial reduction in modern human brain size at roughly 3,000 years ago, during an era of many important innovations and historical events — the appearance of Egypt’s New Kingdom, the development of Chinese script, the Trojan War, and the emergence of the Olmec civilization, among many others,” Villmoare said. 

“We re-examined the dataset from DeSilva et al. and found that human brain size has not changed in 30,000 years, and probably not in 300,000 years,” Villmoare said. “In fact, based on this dataset, we can identify no reduction in brain size in modern humans over any time-period since the origins of our species.” 

Key Takeaways

The UNLV research team questioned several of the hypotheses that DeSilva et. al gleaned from a dataset of nearly 1,000 early human fossil and museum specimens, including:

The UNLV team says the rise of agriculture and complex societies occurred at different times around the globe — meaning there should be variation in timing of skull changes seen in different populations. However, DeSilva’s dataset sampled only 23 crania from the timeframe critical to the brain shrinkage hypothesis and lumped together specimens from locations including England, China, Mali, and Algeria. 
The dataset is heavily skewed because more than half of the 987 skulls examined represent only the last 100 years of a 9.8-million-year span of time — and therefore don’t give scientists a good idea of how much cranial size has changed over time. 
Multiple hypotheses on causes of reduction in modern human brain size need to be reassessed if human brains haven’t actually changed in size since the arrival of our species.

Publication Details

“Did the transition to complex societies in the Holocene drive a reduction in brain size? A reassessment of the DeSilva et al. (2021) hypothesis” was published July 29 in Frontiers in Ecology and Evolution.

BIOENGINEER.ORG

Original Post: bioengineer.org

Continue Reading

Biotech

Growing Cereal Crops With Less Fertilizer

Carly Russell

Published

on

Researchers at the University of California, Davis, have found a way to reduce the amount of nitrogen fertilizers needed to grow cereal crops. The discovery could save farmers in the United States billions of dollars annually in fertilizer costs while also benefiting the environment.

Researchers at the University of California, Davis, have found a way to reduce the amount of nitrogen fertilizers needed to grow cereal crops. The discovery could save farmers in the United States billions of dollars annually in fertilizer costs while also benefiting the environment.

The research comes out of the lab of Eduardo Blumwald, a distinguished professor of plant sciences, who has found a new pathway for cereals to capture the nitrogen they need to grow.

The discovery could also help the environment by reducing nitrogen pollution, which can lead to contaminated water resources, increased greenhouse gas emissions and human health issues. The study was published in the journal Plant Biotechnology.

Nitrogen is key to plant growth, and agricultural operations depend on chemical fertilizers to increase productivity. But much of what is applied is lost, leaching into soils and groundwater. Blumwald’s research could create a sustainable alternative.

“Nitrogen fertilizers are very, very expensive,” Blumwald said. “Anything you can do to eliminate that cost is important. The problem is money on one side, but there are also the harmful effects of nitrogen on the environment.”

Blumwald’s research centers on increasing the conversion of nitrogen gas in the air into ammonium by soil bacteria — a process known as nitrogen fixation.

Legumes such as peanuts and soybeans have root nodules that can use nitrogen-fixing bacteria to provide ammonium to the plants. Cereal plants like rice and wheat don’t have that capability and must rely on taking in inorganic nitrogen, such as ammonia and nitrate, from fertilizers in the soil.

“If a plant can produce chemicals that make soil bacteria fix atmospheric nitrogen gas, we could modify the plants to produce more of these chemicals,” Blumwald said. “These chemicals will induce soil bacterial nitrogen fixation and the plants will use the ammonium formed, reducing the amount of fertilizer used.”

Blumwald’s team used chemical screening and genomics to identify compounds in rice plants that enhanced the nitrogen-fixing activity of the bacteria.

Then they identified the pathways generating the chemicals and used gene editing technology to increase the production of compounds that stimulated the formation of biofilms. Those biofilms contain bacteria that enhanced nitrogen conversion. As a result, nitrogen-fixing activity of the bacteria increased, as did the amount of ammonium in the soil for the plants.

“Plants are incredible chemical factories,” he said. “What this could do is provide a sustainable alternative agricultural practice that reduces the use of excessive nitrogen fertilizers.”

The pathway could also be used by other plants. A patent application on the technique has been filed by the University of California and is pending.  

Dawei Yan, Hiromi Tajima, Howard-Yana Shapiro, Reedmond Fong and Javier Ottaviani from UC Davis contributed to the research paper, as did Lauren Cline from Bayer Crop Science. Ottaviani is also a research associate at Mars Edge.

The research was funded by the Will W. Lester Endowment. Bayer Crop Science is supporting further research on the topic.

BIOENGINEER.ORG

Source Here: bioengineer.org

Continue Reading

Biotech

Illinois Tech ‘spinout’ Startup Influit Energy Has Created the World’s First Rechargeable, Safe, Electric Fuel

Carly Russell

Published

on

CHICAGO, Aug. 5, 20222—It was only a matter of time—before Influit Energy would need to hire more scientists, before the 2,100-square-foot lab space that the company occupies in Chicago’s West Loop neighborhood would grow too small, and before the three co-founders of the startup whose history is inextricably linked to Illinois Institute of Technology would be ready to publicly disclose what they have created: the world’s first rechargeable, safe, electric fuel.

CHICAGO, Aug. 5, 20222—It was only a matter of time—before Influit Energy would need to hire more scientists, before the 2,100-square-foot lab space that the company occupies in Chicago’s West Loop neighborhood would grow too small, and before the three co-founders of the startup whose history is inextricably linked to Illinois Institute of Technology would be ready to publicly disclose what they have created: the world’s first rechargeable, safe, electric fuel.

“We have created a new type of flow battery that is predicated upon a composite material that we invented, which is a nanofluid where the nanoparticles are battery-active materials, which we called nanoelectrofuel, or NEF,” says John Katsoudas (M.S. PHYS ’03), co-founder and CEO of Influit Energy. “All of the technology has come together—we have a crystal-clear path before us.”

Katsoudas calls Influit Energy a “spinout” of Illinois Tech. Leading the company alongside him are two co-founders: Elena Timofeeva, chief operating officer, director of research and development, and a research associate professor of chemistry at Illinois Tech, and Carlo Segre, chief technology officer, chief financial officer, and a professor of physics at Illinois Tech. Segre is also director of the Center for Synchrotron Radiation Research and Instrumentation at Illinois Tech, which operates two sectors of the Advanced Photon Source at Argonne National Laboratory, a resource that Influit Energy occasionally utilizes.

“[Influit Energy’s research] started back in 2009 as a basic science investigation when we were at Illinois Tech and Argonne National Laboratory, and we have taken our technology from basic science development, to applied science, to building prototypes, and now our first product development,” Katsoudas says.

The United States government has also played a critical role in Influit Energy’s growth, awarding the company more than $10 million in contracts to fund the design and fabrication of NEF flow battery prototypes that will allow several agencies to utilize Influit Energy’s batteries in electric vehicles and aircraft.

“The unique high-energy density liquid format of the NEF flow batteries allows use of the same fluids in different devices, meaning fluid, charged at the recharging station from renewable energy sources or a grid, can be used to rapidly refuel vehicles, or for stationary storage and other large portable applications,” Timofeeva says. “Discharged fluid can be returned to a recharge/refuel station for recharging or be charged inside the device by plugging into the power source.”

The company’s current client roster includes NASA, the U.S. Department of Defense’s Defense Advanced Research Project Agency (DARPA), and two grant-awarding programs operated by the U.S. Air Force: AFWERX, a team of innovators fostering collaborations across the military, academia, and industry, and the Small Business Innovation Research program (AFRL SBIR).

“We are using multiple small business innovation grants to demonstrate different elements of this closed loop energy ecosystem,” Segre says. “It takes time when you’re trying to do something transformational and new like this, and you have to not overreach, but ultimately, we’re moving toward the same goal—to actually get technology commercialization.”

Five separate projects funded by the government have been strategically designed by Influit Energy to work together as components of a closed loop energy ecosystem that will one day be able to be commercialized more broadly.

“Everything we’re doing right now is geared toward the specific goal of developing what we call the closed-loop energy cycle, whereby your batteries are not solid materials, they are liquids. You can treat the battery as a fuel that gets pumped in to mobility devices—cars, trucks, airplanes, anything that needs to be electrified,” Katsoudas says. “Every one of our contracts is funding a different aspect of the totality development of that ecosystem.”

The fuel utilized by this new system can be charged using either renewable energy or an electrical grid.

“Components of such ecosystems are batteries for devices like cars and electric utility vehicles funded by DARPA as of now; a refueling nozzle and control system, funded by AFWERX; and a charger for fast charging of the fluids, funded by NASA,” Timofeeva says.

Influit Energy has two separate projects underway with DARPA. One is focused on demonstrating the effectiveness of the batteries in a utility electric vehicle, and the other is a study looking at how to optimize and scale up the manufacturing of the NEF batteries. The goal is to reduce the mass and volume of the batteries.

“The fifth project is related to the development of [second-generation nanoelectrofuel] and funded by AFRL SBIR funding,” Timofeeva says. “This new second generation of NEF chemistry in our unique and proprietary nanofluid format will ultimately provide a four-to-five-times increase in energy density compared to state-of-the art [lithium-ion] batteries and could meet Air Force needs and demand with significantly improved energy density, increased operating temperature range, no fire/explosion hazard, and are made of inexpensive, domestically sourced, Earth-abundant materials.”

Because the fluid in the batteries can be recharged in any location using whatever charging mechanisms are available in that market, Katsoudas envisions tremendous growth and opportunity for the use of Influit Energy’s batteries in the future.

“That in a nutshell is what Influit Energy is going after, and every one of the contracts that we have is geared toward,” he says. “[Each of our sponsors are] funding a different section of the vision. The neat thing is that, from Influit Energy’s perspective, they’re funding this complete vision, pieces of it. For [each of the funding agencies], they’re getting a specific pain point addressed that is specific to each of our sponsors, so it’s sort of a win-win-win. And effectively that’s why we’re going to win this—the complete and total electrification of transportation, the electrification of transportation that doesn’t crash the grid, and the distribution of energy that doesn’t cost us to have to rebuild trillions of dollars of infrastructure.”

In June of 2022, the Influit team successfully completed their first NEF flow battery testing for the electric utility vehicle, which was demonstrated at a commercialization partner site. Katsoudas also spoke at the South by Southwest festival and a few academic conferences earlier this year about Influit Energy’s work, and is now in conversation with venture capitalists regarding the future of Influit Energy. As contracts continue to accumulate, the company is hiring new scientists and is actively seeking to expand its square footage—from 2,100 square feet to 20,000—through the acquisition of a new lab space. Where the lab will be located remains to be seen. The co-founders hope to stay in Chicago, but say they are also considering opportunities in Austin, Texas.

ILLINOIS INSTITUTE OF TECHNOLOGY

Illinois Institute of Technology, also known as Illinois Tech, is a private, technology-focused research university. Illinois Tech is the only university of its kind in Chicago, and its Chicago location offers students access to the world-class resources of a great global metropolis. It offers undergraduate and graduate degrees in engineering, science, architecture, business, design, human sciences, applied technology, and law. One of 22 institutions that comprise the Association of Independent Technological Universities, Illinois Tech provides an exceptional education centered on active learning, and its graduates lead the state and much of the nation in economic prosperity. Illinois Tech uniquely prepares students to succeed in professions that require technological sophistication, an innovative mindset, and an entrepreneurial spirit. 

BIOENGINEER.ORG

Original Source: bioengineer.org

Continue Reading

Trending

DXDD.com